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Abstract. The knowledge of the temperature dependence of the thermal conductivity is
necessary in many aspects. It is required, for example, as an important input parameter for the
calculation of temperature distributions in metals after interaction with laser pulses. Although
extensive compilations exist on this subject they may be of limited value because the data were
obtained under steady state conditions where the electrons and phonons are described by a single
common temperature. At short laser pulses, however, the electron and phonon subsystems are
not in local thermal equilibrium and have to be characterized by different temperatures. It is
shown that the validity of the often used linear dependence of the thermal conductivity on the
electron temperature is limited to some few thousand kelvin and becomes definitely wrong at
higher temperatures. A formula including the thermoelectric effects is derived that is valid
throughout the whole temperature range as well as for the case of local thermal equilibrium and
nonequilibrium.

The electronic thermal conductivity in metals is about one to two orders of magnitude higher
than for the corresponding phonon contribution. It is a well known quantity and tabulated
in many compilations or textbooks (e.g. Weast 1982). For temperatures above the Debye
temperature the thermal conductivity is almost constant in metals. This property, however,
is measured under steady state conditions and for solids, therefore, the temperatures are
restricted to values below the melting point or for liquids to values below the evaporation
point. Due to the steady state condition, the electron and phonon subsystems are in local
thermal equilibrium and, hence, characterized by a common temperature. From a theoretical
point of view, as a result, higher order corrections in Sommerfeld’s expansion (see e.g.
Ashcroft and Mermin 1976) can be neglected since they are proportional to (kBT /µ0)
whereµ0 is the Fermi energy at zero temperature. On short time scales, however, which,
for example, become important for the interaction of short laser pulses with metals, this
is not longer true and one has to consider separate temperatures for the electrons and
phonons. These can be very different. Under such conditions, the use of the experimentally
determined standard values becomes questionable. In the case of two different temperatures
a first and commonly used approach for modelling the following relation can be derived for
the thermal conductivity from the simple gas equation

λ(Te, T0) = λ(T0)Te/T0 (1)
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whereT0 represents the steady state temperature at which the conductivity was measured.
To obtain this expression the following assumptions have been made: first, the electronic
specific heat is proportional to the electron temperatureTe and, second, the scattering time
depends, in essence, only on the number of phonons and, therefore, on their temperature.

Below we will show that this predicted linear dependence on the electron temperature
is restricted to fairly low electron temperatures up to some few thousand kelvin. For
higher values the behaviour is completely different, and the thermal conductivity decreases
roughly with the inverse of the electron temperature. This is worth noting since the thermal
conductivity is an important input quantity for the calculation of the temperatures inside a
metal after an interaction with a short laser pulse (Anisimov and Rethfeld 1996, Hüttner and
Rohr 1996, 1998) where for short periods of time the electron temperatures can rise up to
some few electron volts while the phonon temperature stays almost constant. In these cases
the use of (1) would lead to serious errors for the thermal diffusivity and, consequently,
wrong values would be predicted for the electron and phonon temperatures. The mentioned
nonlinear behaviour becomes especially important for metals with a comparatively small
coefficient of heat exchange and, therefore, long relaxation times, for example gold, silver
or lead that are frequently used in short time experiments e.g. by Fannet al (1992) or Wang
and Downer (1992).

In the semiclassical theory of conduction in metals the electronic thermal current density
is defined by

q =
∑
k

[E(k − µ(Te)]v(k)2τ(E(k))∂f
0
k

∂Te
(−∇Te) (2)

where for the sake of a simpler notation we have assumed that the heat is carried by the
electrons in only a single band. In the following we will restrict ourselves to the free electron
model. This simplification does not affect the general validity of our physical statement
below since the consideration of a real band structure would only make the derivation more
complicated. Another important point is worth noting: a linear relation between the flux and
the force as in (2) implies that from the point of view of thermal dynamics the temperature
is a well defined quantity (de Groot 1952). In our final discussion below we will stress this
point once more.

As all abbreviations hold their usual meaning (2) is quite general. It is important to
indicate that only electron properties are involved. Therefore,Te is the temperature of the
electrons described by the Fermi–Dirac distribution. Within the frame of the relaxation
time approximation possible interactions with other subsystems, which may have different
temperatures, are only included in the electron lifetimeτ(E). In the standard theory one
inserts into (2) the electron–phonon scattering time represented by Drude’s scattering time.
This time is proportional to the inverse of the phonon temperature. The corrections caused
by the electron–electron interaction are usually neglected in the case of local thermal
equilibrium because they are assumed to be small. The situation is different, however,
if the electrons possess a much higher temperature than the phonons. Utilizing the Fermi
liquid theory one obtains for the electron–electron scattering time

τ−1
e−e = τ−1

T + τ−1
E = 4π2βk2

BT
2
e + β(E − µ)2 (3)

whereβ is an experimental parameter (Parkinset al 1981). Combining this relation with
the Drude timeτD the complete electron lifetime can be written as

τ(Te, Tph) = τD(Tph)

1+ z(Te, Tph)+ β(E − µ(Te))2 (4)
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with the abbreviationz(Te, Tph) = τD/τT = τD4π2βk2
BT

2
e . After expansion of the chemical

potential up to the second order

µ(Te) = µ0

(
1− π

2

12

k2
BT

2
e

µ2
0

− 7π4

360

k4
BT

4
e

µ4
0

)
(5)

and insertion of equations (3)–(5) into (2), the electronic thermal conductivity is given by

λ =
∑ [E − µ(Te)]2

Te

v2τD

(1+ z+ β(E − µ(Te)2)
×
(
E − µ0

kBTe
− π

2

12

kBTe

µ0
− 7π4

120

k3
BT

3
e

µ3
0

)(
−∂f

0

∂E

)
. (6)

For reason of simplification the indexk is omitted. For evaluating (6) the sum is replaced by
an integral over the wave vectork. After integration over the angles the remaining integral
is rewritten as an energy integral. Applying Sommerfeld’s expansion up to the second order
then yields

λ = λLTE TeG(Te)

Tph(1+ z(Te, Tph))
{

1+ 1

G(Te)2

[
π2k2

BT
2
e

24µ2
0

+ 7πk4
BT

4
e

480µ4
0

]}
(7)

where we have suppressed all terms higher than the fourth order inkBTe/µ0. The function
G(Te) is defined up to the same order by

G(Te) =
√

1− π
2k2
BT

2
e

12µ2
0

− 7π4k4
BT

4
e

360µ4
0

. (8)

For a more correct notation we have changed the index ‘0’ from (1) for the index ‘LTE’
emphasizing that this is the conductivity related to the case of local thermal equilibrium
(Te = Tph) without the contribution of the electron–electron scattering. As a result of the
integration its explicit form is

λLTE = π2

3

k2
B

e2
TphσD. (9)

This is nothing else but the Wiedemann–Franz law withσD as the Drude dc electrical
conductivity. Although (9) is based on a highly oversimplified model, it captures the
correct trend of the temperature dependence (Pinskiet al 1981). A more realistic calculation
beyond the free electron approach requires the determination of(n/m)eff from band theory
as proposed by Allenet al (1986). Furthermore, for some transition metals with low lying
d bands the electron density of states can vary significantly within an energy interval±kBTe.
This may have a substantial effect on the magnitude of the effect calculated here, but should
not change its qualitative features.

Assuming for a momentz � 1 andkBTe/µ0 � 1 one can recognize that (7) reduces
to (1). By this way we have confirmed this simple equation on a more fundamental basis.
We also identify that this expression includes only the electron–phonon contribution to the
thermal resistivity.

In general, it follows from (7) that for electron temperatures not too high the thermal
conductivity is proportional to (Te/Tph) as given by (1). But for higher values a dependence
on roughly the inverse electron temperature becomes dominant becausez is proportional to
the square of the electron temperature. Obviously, the location of the turning point depends
on the value of the constantβ. For the noble metals this quantity is in the order of 1013

(s eV2)−1 (Parkinset al 1981). An estimate of the leading factor in front of the opening
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curly bracket in (7) predicts for gold (β = 2.4×1013 s−1 eV−2 andλLTE = 3.2 W cm−1 K−1)
at Tph = 300 K

λLTETe

Tph(1+ τD(Tph)4π2βk2
BT

2
e )
∼=


0.03 for Te = 300 K� 1

0.3 for Te = 103 K ≈ 1

30 for Te = 104 K � 1.

From these values we conclude that also under steady state conditions the electron–electron
scattering becomes important at higher temperatures and that in the general case it even is
dominant at high electron temperatures.

These statements are corroborated by figure 1 where the electronic thermal conductivity
of gold is plotted. The full curve represents the electronic short-time temperature dependence
as a function of the electron temperature at a fixed phonon temperature ofTph = 300 K. A
deviation from the linear increase predicted by (1) (dashed curve) can be recognized around
1000 K and for temperatures above about 2000 K a completely different behaviour appears.
The assumed constancy of the phonon temperature should be correct for gold up to about
one picosecond, as shown by Juhaszet al (1992). The rise of the electron temperature may
be caused by the interaction with a fs laser pulse. (7) is, of course, more general and not
restricted to a constant phonon temperature. The dash–dotted curve is the calculated thermal

Figure 1. Thermal conductivity of Au, upper curves for the non-equilibrium state as a function
of Te at a fixedTph = 300 K; (7), full curve; (1), dashed; lower curves for the case of local
thermal equilibrium (T = Te = Tph); (7) dash–dotted curve; (7) withoutG(Te), i.e. without
electron–electron scattering, dotted;+, experimental values taken from Weast (1982).
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conductivity if both temperatures are equal as happens during measurements under steady
state conditions. The good agreement with the experimental values (+) taken from Weast
(1982) confirms the correctness of the constantβ and underlines the necessity of already
including the electron–electron scattering in the case of local thermal equilibrium. A further
improvement of the agreement between the experimental points and the theoretical curve
could be achieved if the thermal expansion were taken into account. We have neglected
this aspect because it was not our goal to give an as good as possible a description of the
thermal conductivity for the steady case but to work out the principally distinct behaviour
for different electron and phonon temperatures. We also have not distinguished, therefore,
between the solid and liquid phase. Consequently, above the melting point the curves can
be regarded only as an approximation. Considering electron–phonon scattering only, one
obtains the dotted curve where values for the thermal conductivity are too large.

Up to this point we have ignored thermoelectric effects. In the steady state this
contribution is usually neglected because the deviations from the thermal conductivity are
of the order of(kBT /µ0)

2 which is much smaller than unity. Since in the general case the
electron temperature can be much higher than the phonon temperature one has to recalculate
the thermoelectric corrections. Following Ashcroft and Mermin (1976) this contribution is
defined by

λTE = − e
2

Te

[∑
v2(k)τ (E)(E(k)−µ(Te))

(
−∂f

0

∂E

)]2[∑
v2(k)τ (E)

(
−∂f

0

∂E

)]−1

(10)

with e as the electronic charge and ‘T E’ as an abbreviation for the thermoelectric effect.

Figure 2. Full curve: ther-
mal conductivity of gold
according to (7); dash–
dotted curve: (11), abso-
lute value of thermoelectric
correction.
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Evaluating equation (10) as done above we find after the integrations

λTE = −λLTE Te
Tph

π2k2
BT

2
e

12µ2
0(1+ z(Te, Tph))G(Te)3/2

. (11)

Since this result is similar to (7), however additionally weighted by the ratio(kBTe/µ0)
2

we expect only small contributions as in the standard theory. Figure 2 shows a double-
logarithmic plot of the thermal conductivity as given by (7) and the absolute value of
the thermoelectric correction. Summarizing our results, we find that (1) can be used as
an approximation for moderate electron temperatures. For higher temperatures, however,
it becomes definitely wrong and (7) must be applied. This point of view is especially
important for the modelling of the electron and phonon temperature distribution in metals
during and after interaction with short laser pulses. A good match to this equation is already
obtained by the expression in front of the opening curly bracket.

The application of our theory takes for granted the establishment of an electron
temperature and is, therefore, restricted to not too short time scales. A few scattering
events must occur for this reason. A further limitation of the above derivation is related
with the validity of the Boltzmann theory. Allen and coworkers (1986) have shown that
this theory is accurate if the mean free path is larger than about five interatomic spacings.

Finally, however, one should keep in mind that a nonequilibrium electron distribution is
found in the experiments (e.g. Fannet al 1992). One possibility to describe such behaviour
is to expand the Boltzmann equation up to the second order. Under these conditions the heat
flow is given by an expression similar to the Maxwell–Cattaneo equation which corresponds
to (2), but with an additional termτrelax∂q/∂t on the left-hand side (Jouet al 1993).
Nevertheless, one can still identify the expression before the temperature gradient with the
thermal conductivity even if some higher order corrections appear due to the nonequilibrium
electron distribution function. From this point of view we can regard (7), on the one hand,
as an improvement of the standard theory and, on the other hand, as an approximation to a
nonequilibrium theory still to be developed.
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